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ABSTRACT

The transmission-line fault localization of high-voltage (HV) transmission networks and different medium-voltage (MV) wind farms are
implemented using a global time-frequency analysis algorithm, energy-spectrum-based hyperbolic S-transform (HS), to extract the potential
power signatures from monitoring non-linear and non-stationary fault signals on HV power utility. An energy concentration algorithm is used to
transform each HS coefficient into effective features to quantify various faulty events and reduce recognition algorithms' inputs. Furthermore,
the Multiclass classifier processes fault location identification. The simulation results show that the proposed method achieves a high
classification rate for considering fault inception angles and fault resistance.

1. INTRODUCTION

Wind power is a significant clean energy source due to decreasing petroleum reserves and environmental disruption of carbon emission. To
obtain energy from wind power, the regular operation of wind farms is an important issue. The process of obtaining energy is that the wind
passes the individual wind turbine, a wind farm component. Therefore, wind energy transfers mechanical kinetic energy into electric power. To
effectively use wind power, a substation is needed. It consists of the step-up transformers, power factor correction and voltage control devices,
and switching equipment to construct a generation station. Moreover, a large wind farm is usually able to supply over hundreds of megawatts.
The amount of power generation is still considerable, though it is smaller than that of all wind turbines' nominal capacity for the overall
operating hours in actual conditions.

The present large-scale wind farms may have some potential problems of grid faults, and they may cause the problem of system stability
such as transmission-line faults and internal short circuits of the wind turbine. Furthermore, it may lead to blackout occurrences that result in
enormous financial losses for users. Hence, finding a method to identify grid faults and enhance the system's stability is excellent urgency. The
authors have proposed the best approach for recognizing grid fault types [1]. However, those fault problems usually exist in more than one wind
farm in the actual case. Therefore, it will be more difficult and complex to identify the various transmission-line fault locations from high-
voltage (HV) transmission networks and numerous medium-voltage (MV) wind farms, especially from monitoring HV power utility.

Many researchers have investigated different protection comparisons and improvements of grid faults for wind farms to enhance the power
system's stability [2-7]. Hooshyar et al. [2] revealed distance protection during balanced faults for the transmission lines contacted with the wind
farms' induction generator. Deng and Chen [3] proposed a fault ride-through of dc offshore wind farms, which could minimize the transmission
system's disturbance between the dc offshore wind farm and the ac grid. Yao et al. [4] suggested an approach to balance a hybrid wind farm
capacity between fixed-speed induction generator and permanent magnet synchronous generator when grid faults exist. Kandukuri et al. [5]
proposed a scheme to detect and classify wind turbine pitch systems' faults using three-phase motor currents. As mentioned in [5], the extended
Park's vector modulus (EPVM) is suitable to diagnose the faults for both permanent magnet synchronous machines (PMSMs) and induction
motors (IMs). To find a rapidly real-time scheme of detecting and classifying transmission-line faults for submarine, Wang et al. [6] proposed a
method to combine wavelet noise reduction, Clarke transforms, Stockwell transforms (ST), and decision tree (WRC-SDT). Yang et al. [7]
analyzed the internal overcurrent faults of the dc transmission systems for the small-scale multi-voltage source converter (VSC) dc wind farms
and multi-VSC HV dc (VSC-HVDC) offshore transmission systems.

Furthermore, to overcome HV transmission protection challenges for large-scale wind farms, many works of literature have proposed the
protection schemes [8-10]. Pradhan and Joos et al. [8] investigated the protection of lines and studied the trip characteristic for the distance relay.
Nayak et al. [9] studied a wide-area protection approach to quickly identify the bus closest to the fault using synchronized phasor measurement
units (PMUs). Biswas et al. [10] investigated the impact of transmission lines for the distance relay. They proposed fault detection and
classification methods using the sign of the change of positive-sequence currents. As mentioned in [10], the optimization algorithm is significant
to minimize the amount of PMUs in wind farms due to the expensive cost and complicated placement of the synchronized PMUs.

Over the years, many researchers have studied the non-intrusive monitoring techniques for home appliances, power distribution systems,
and transmission networks [11, 12]. Chang et al. [11] proposed a transient energy method to enhance the non-intrusive load identification
accuracy and computational speed. In [11], the authors utilized a turn-on transient characteristic response of home appliances to recognize non-
stationary transient signals for each load accurately. Chang et al. [12] proposed an energy spectrum of the wavelet transform (WT) coefficients
using Parseval's theorem to represent load turn-on/off transient features without demoting performance.

However, current research shows the methodology of fault location identification of extra-high-voltage (EHV) transmission networks from
monitoring power utility sides is not expensive and more accurate recognition [13]. In [13], the authors utilized Parseval's theorem and
multiclass support vector machines (SVMs) to quantify different fault locations' energy distribution and obtain fault location identification,
respectively. Therefore, a non-intrusive monitoring technique is considered as an alternative scheme for noncommunication protection
arrangements.

Figure 1 shows a HV transmission network consisting of the numerous MV wind farms from monitoring the three-phase currents of the HV
power utility side. The measured currents are quickly extracted by the proposed non-intrusive fault monitoring (NIFM) scheme to classify the
various transmission-line fault locations of HV transmission networks and different MV wind farms. Therefore, the identification results of fault
location are employed to analyze power demand zones potentially affected.

This paper's results showed that an uncomplicated and accurate non-intrusive fault localization system is utilized to conquer the problems of
non-communication protection schemes and provide a dependable and stable power supply zone. Furthermore, this paper proved the proposed
method's identification accuracy has a high success rate by comparing other feature extraction algorithms in electromagnetic transient program
(EMTP)/ alternative transients program simulated systems.

This paper is organized as follows: the derivation and presentation of the proposed ES-HS and SVMs are presented in Section II. Section III
demonstrates the simulation results for comparisons conducted in this paper. Finally, conclusions are made in Section IV.

Figure 1. Basic functional scheme of a NIFM sample.

2. PROPOSED METHODS

2.1 Energy Spectrum based HS
S-transform was proposed as the combination of STFT and WT to overcome their drawbacks for transient and nonstationary signals. In fault

study, the faulted signals should be fast and accurately detected. It is quietly important to analyze signals in time and frequency domains. At high
frequency of fault event, the resolution of symmetrical window is better than that of asymmetrical window. Thus, the generalized window is
replaced with a hyperbolic window ( whyp ) to form the generalized HST, i.e.

(1)

(2)

(3)

where γf and γb are the parameters of forward-taper and backward-taper, respectively; λ2 is the positive curvature; and ζ is a translation factor to
set the peak of the hyperbolic window at (τ-t)=0.

In order to determine the discrete HST, discretization of the signal x(t) is represented as follows:

(4)

Then, substituting (4) into (1), one will obtain

(5)

The integral of the squared magnitude of a function is known as the energy of the function. A time-frequency signal analysis tool, known as
the HST, can improve energy concentration of the ST using a hyperbolic window in the time-frequency domain. A discrete fault signal s[n] can
be formularized as S[K] by the HST, i.e.,

(6)

where i is the number of the data samples for each phase P at each location L, and j is the number of scales.
Consequently, through the HST decomposition, the energy of the individual fault transient signal is shown in (7). The term on the right side

of (7) denotes the sum of the average power of the decomposed signal.

(7)
where K is the total number of the data samples for each scale j.

As stated in the above section, the term in (7), the high-frequency components, will be employed to select the features of fault event in
NIFM system. The power spectrum of a fault event signal described by Parseval’s Theorem and the HSTCs, the power spectrum of each scale
can be obtained as shown in (8). Thus,

(8)

As demonstrated in Fig. 2, they are the energy spectra of three transmission-line fault locations (ZL5, ZL7, and L1F5) in two MV wind farms
and one HV power transmission network, respectively. Accordingly, the distinct energy spectra as the inputs of features for recognition
algorithms can effortlessly recognize different transmission-line fault locations.

(a)                                                                  (b)

(c)
Figure 2. The spectrum distributions monitored on SBUS during SLGF-Ag for different fault locations. (a) ZL5. (b) ZL7. (c) L1F5.

2.2 SVMs
The SVMs are designed as supervised learning algorithms to examine data for classification and regression analyses. To perform

classification, SVMs can efficiently operate a nonlinear classification using the nonlinear kernel function for simply mapping their inputs into
high-dimensional feature spaces. In the past years, several researchers have applied SVMs to multiclass classification applications. Meyer et al.
[16] concluded the SVMs proved very competitive about simple statistical procedures and ensemble methods for classification, mainly yielding
good results without the disadvantage of computationally complicated hyperparameter tuning.

To solve multiclass SVM problems, Singh and Shaik [17] utilized two separate SVM models to categorize various induction motor fault
problems, i.e., inter-turn shorts of the stator winding and faulty phase detection of phase-to-ground faults. Chang [1] utilized SVM for
classifying fault types in a non-intrusive application of HV/EHV power transmission networks.

A library of Support Vector Machines (LIBSVM) utilizes the one-against-one algorithm for multiclass classifications [18]. Fernandez-
Delgado et al. [19] studied the SVM classifiers to find that the parameters of LIBSVM, i.e., regularization C and kernel spread gamma, can be
automatically tunned to yield the highest average cross-validation accuracy; it is the best SVM classifier with Gaussian kernel function.
LIBSVM is used to classify transmission-line fault locations in this paper.

The classification accuracy of LIBSVM is calculated by the following equation (13), i.e.,
(9)

3. SIMULATION RESULTS

3.1 Study Environment
To implement the non-communication protection scheme of the proposed NIFM, Fig. 1 is an example consisting of two 22.8kV/650V wind

farms in a typical three-phase 230kV transmission networks for realizing transmission-line protection implementations by monitoring the HV
buses of the power utility side [20].

In Fig. 1, the proposed NIFM system comprises one equivalent power utility source and seven transmission lines. The transmission-line
design for L1 and L2 between Bus1 and Bus2 is a mutually coupled double-circuit line. L3, L4, L5, L6, and L7 designed as lumped-parameter
models are respectively contacted between L1F3 and Bus3, between Bus2 and Bus4, between B3BKL and Bus5, between L2F5 and Bus6, and
between B6BKL and Bus7. There are 72 km long for L1, L2, L3, L4, and L6. There are 3 km long for L5 and L7. Three synchronous motors
modeled as the SM2, SM3, and SM4 are contacted with Bus4, Bus3, and Bus6. Two of four doubly-fed induction generators rated 3.88 MVA
associate with Bus5 and Bus7 through a step-up transformer. The LIBSVM target outputs of the fault events are located on the node L1F5, ZL5,
and ZL7. Finally, different scenarios of fault types such as SLGF, double line-to-ground fault (DLGF), double line fault (DLF), and three-line-to-
ground fault (LLLGF) are assigned to examine the achievement for the proposed methods for fault localization.

3.2 Results
The energy-spectrum-based ST (ES-ST) [1], change of the signal energy-based HS (ce-HS) [21], and energy-spectrum-based WT (ES-WT)

[12, 22] are employed as benchmark methods for examining the discriminative performance of the proposed ES-HS.
Therefore, ce-HS and ES-WT values are smaller than those of ES-HS and ES-ST from the above results of various fault types in the cross-

validation and classification accuracy. The cross-validation accuracy values of ES-HS and ES-ST are above 98.2143% and 98.8095% for
various fault types. Moreover, the values of classification accuracy of ES-HS and ES-ST are respectively above 93.9394% and 93.3333% for
different fault types.

4. CONCLUSIONS

This paper proposes a NIFM system for monitoring the power utility's HV buses to recognize various transmission-line fault locations in the
HV transmission networks and different MV wind farms. Unlike PMUs installed on each HV/MV bus, the NIFM system removes intricate
communication and synchronization time.

To quantify the HS coefficients for effectively diminishing the input sizes of LIBSVM in this paper, the ES-HS is proposed to form the
effective power feature distributions regarding different fault resistances and inception times for each fault type. The acquired results of various
fault types show the proposed system is feasible to classify the various transmission-line fault locations in HV transmission networks and
different MV wind farms. The classification accuracy can be above 93.9394%.
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